|  | OpenMS
    2.6.0
    | 
Scoring functions used by MRMScoring. More...
| Classes | |
| struct | XCorrArrayType | 
| Typedefs | |
| Type defs and helper structures | |
| typedef std::pair< int, double > | XCorrEntry | 
| Cross Correlation array contains (lag,correlation) pairs.  More... | |
| Functions | |
| Helper functions | |
| OPENSWATHALGO_DLLAPI double | NormalizedManhattanDist (double x[], double y[], int n) | 
| Calculate the normalized Manhattan distance between two arrays.  More... | |
| OPENSWATHALGO_DLLAPI double | RootMeanSquareDeviation (double x[], double y[], int n) | 
| Calculate the RMSD (root means square deviation)  More... | |
| OPENSWATHALGO_DLLAPI double | SpectralAngle (double x[], double y[], int n) | 
| Calculate the Spectral angle (acosine of the normalized dotproduct)  More... | |
| OPENSWATHALGO_DLLAPI XCorrArrayType | calcxcorr_legacy_mquest_ (std::vector< double > &data1, std::vector< double > &data2, bool normalize) | 
| OPENSWATHALGO_DLLAPI XCorrArrayType | normalizedCrossCorrelation (std::vector< double > &data1, std::vector< double > &data2, const int &maxdelay, const int &lag) | 
| OPENSWATHALGO_DLLAPI XCorrArrayType | calculateCrossCorrelation (const std::vector< double > &data1, const std::vector< double > &data2, const int &maxdelay, const int &lag) | 
| Calculate crosscorrelation on std::vector data without normalization.  More... | |
| OPENSWATHALGO_DLLAPI XCorrArrayType::const_iterator | xcorrArrayGetMaxPeak (const XCorrArrayType &array) | 
| Find best peak in an cross-correlation (highest apex)  More... | |
| OPENSWATHALGO_DLLAPI void | standardize_data (std::vector< double > &data) | 
| Standardize a vector (subtract mean, divide by standard deviation)  More... | |
| OPENSWATHALGO_DLLAPI void | normalize_sum (double x[], unsigned int n) | 
| divide each element of x by the sum of the vector  More... | |
| OPENSWATHALGO_DLLAPI std::vector< unsigned int > | computeRank (const std::vector< double > &w) | 
| OPENSWATHALGO_DLLAPI double | rankedMutualInformation (std::vector< double > &data1, std::vector< double > &data2) | 
Scoring functions used by MRMScoring.
Many helper functions to calculate cross-correlations between data
| typedef std::pair<int, double> XCorrEntry | 
Cross Correlation array contains (lag,correlation) pairs.
| OPENSWATHALGO_DLLAPI XCorrArrayType OpenSwath::Scoring::calculateCrossCorrelation | ( | const std::vector< double > & | data1, | 
| const std::vector< double > & | data2, | ||
| const int & | maxdelay, | ||
| const int & | lag | ||
| ) | 
Calculate crosscorrelation on std::vector data without normalization.
| OPENSWATHALGO_DLLAPI XCorrArrayType OpenSwath::Scoring::calcxcorr_legacy_mquest_ | ( | std::vector< double > & | data1, | 
| std::vector< double > & | data2, | ||
| bool | normalize | ||
| ) | 
Calculate crosscorrelation on std::vector data - Deprecated! Legacy code, this is a 1:1 port of the function from mQuest
| OPENSWATHALGO_DLLAPI std::vector<unsigned int> OpenSwath::Scoring::computeRank | ( | const std::vector< double > & | w | ) | 
divide each element of x by the sum of the vector
| OPENSWATHALGO_DLLAPI XCorrArrayType OpenSwath::Scoring::normalizedCrossCorrelation | ( | std::vector< double > & | data1, | 
| std::vector< double > & | data2, | ||
| const int & | maxdelay, | ||
| const int & | lag | ||
| ) | 
Calculate crosscorrelation on std::vector data (which is first normalized) NOTE: this replaces calcxcorr
Referenced by MRMTransitionGroupPicker::computeQuality_().
| OPENSWATHALGO_DLLAPI double OpenSwath::Scoring::NormalizedManhattanDist | ( | double | x[], | 
| double | y[], | ||
| int | n | ||
| ) | 
Calculate the normalized Manhattan distance between two arrays.
Equivalent to the function "delta_ratio_sum" from mQuest to calculate similarity between library intensity and experimental ones.
The delta_ratio_sum is calculated as follows:
![\[ d = \sqrt{\frac{1}{N} \sum_{i=0}^N |\frac{x_i}{\mu_x} - \frac{y_i}{\mu_y}|) } \]](form_0.png) 
| OPENSWATHALGO_DLLAPI double OpenSwath::Scoring::rankedMutualInformation | ( | std::vector< double > & | data1, | 
| std::vector< double > & | data2 | ||
| ) | 
Referenced by MRMTransitionGroupPicker::pickFragmentChromatograms().
| OPENSWATHALGO_DLLAPI double OpenSwath::Scoring::RootMeanSquareDeviation | ( | double | x[], | 
| double | y[], | ||
| int | n | ||
| ) | 
Calculate the RMSD (root means square deviation)
The RMSD is calculated as follows:
![\[ RMSD = \sqrt{\frac{1}{N} \sum_{i=0}^N (x_i - y_i)^2 } \]](form_1.png) 
Calculate the Spectral angle (acosine of the normalized dotproduct)
The spectral angle is calculated as follows:
![\[ \theta = acos \left( \frac{\sum_{i=0}^N (x_i * y_i))}{\sqrt{\sum_{i=0}^N (x_i * x_i) \sum_{i=0}^N (y_i * y_i)} } \right) \]](form_2.png) 
| OPENSWATHALGO_DLLAPI void OpenSwath::Scoring::standardize_data | ( | std::vector< double > & | data | ) | 
Standardize a vector (subtract mean, divide by standard deviation)
| OPENSWATHALGO_DLLAPI XCorrArrayType::const_iterator OpenSwath::Scoring::xcorrArrayGetMaxPeak | ( | const XCorrArrayType & | array | ) | 
Find best peak in an cross-correlation (highest apex)
Referenced by MRMTransitionGroupPicker::computeQuality_().
 1.8.16
 1.8.16