|  | OpenMS
    2.6.0
    | 
 
 
  
  
 
Go to the documentation of this file.
   50   class PeptideIdentification;
 
   51   class ProteinIdentification;
 
   95       static std::map<String, std::vector<std::vector<double>>> extractAndTransformScores(
 
   96         const std::vector<ProteinIdentification> & protein_ids,
 
   97         const std::vector<PeptideIdentification> & peptide_ids,
 
   98         const bool split_charge,
 
   99         const bool top_hits_only,
 
  100         const bool target_decoy_available,
 
  101         const double fdr_for_targets_smaller);
 
  116       static void updateScores(
 
  118         const String & search_engine,
 
  120         const bool prob_correct,
 
  121         const bool split_charge,
 
  122         std::vector<ProteinIdentification> & protein_ids,
 
  123         std::vector<PeptideIdentification> & peptide_ids,
 
  124         bool & unable_to_fit_data,
 
  125         bool & data_might_not_be_well_fit);
 
  135       bool fit(std::vector<double> & search_engine_scores, 
const String& outlier_handling);
 
  145       bool fitGumbelGauss(std::vector<double>& search_engine_scores, 
const String& outlier_handling);
 
  154       bool fit(std::vector<double> & search_engine_scores, std::vector<double> & probabilities, 
const String& outlier_handling);
 
  157       void fillDensities(
const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
 
  159       void fillLogDensities(
const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
 
  161       void fillLogDensitiesGumbel(
const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
 
  163       double computeLogLikelihood(
const std::vector<double> & incorrect_density, 
const std::vector<double> & correct_density);
 
  169       double computeLLAndIncorrectPosteriorsFromLogDensities(
 
  170           const std::vector<double>& incorrect_log_density,
 
  171           const std::vector<double>& correct_log_density,
 
  172           std::vector<double>& incorrect_posterior);
 
  180       std::pair<double, double> pos_neg_mean_weighted_posteriors(
const std::vector<double> &x_scores,
 
  181                                                                  const std::vector<double> &incorrect_posteriors);
 
  189       std::pair<double, double> pos_neg_sigma_weighted_posteriors(
const std::vector<double> &x_scores,
 
  190                                                                  const std::vector<double> &incorrect_posteriors,
 
  191                                                                  const std::pair<double, double>& means);
 
  196         return correctly_assigned_fit_param_;
 
  202         return incorrectly_assigned_fit_param_;
 
  208         return incorrectly_assigned_fit_gumbel_param_;
 
  214         return negative_prior_;
 
  220         double z = exp((params.
x0 - x) / params.
sigma);
 
  221         return (z * exp(-1 * z)) / params.
sigma;
 
  228       double computeProbability(
double score) 
const;
 
  231       TextFile initPlots(std::vector<double> & x_scores);
 
  243       void plotTargetDecoyEstimation(std::vector<double> & target, std::vector<double> & decoy);
 
  248         return smallest_score_;
 
  252       void tryGnuplot(
const String& gp_file);
 
  256       void processOutliers_(std::vector<double>& x_scores, 
const String& outlier_handling) 
const;
 
  262       static double transformScore_(
const String& engine, 
const PeptideHit& hit, 
const String& current_score_type);
 
  
struct to represent the parameters of a gumbel distribution
Definition: GumbelMaxLikelihoodFitter.h:65
GumbelMaxLikelihoodFitter::GumbelDistributionFitResult getIncorrectlyAssignedGumbelFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:206
struct of parameters of a Gaussian distribution
Definition: GaussFitter.h:65
A more convenient string class.
Definition: String.h:59
This class provides some basic file handling methods for text files.
Definition: TextFile.h:46
GaussFitter::GaussFitResult incorrectly_assigned_fit_param_
stores parameters for incorrectly assigned sequences. If gumbel fit was used, A can be ignored....
Definition: PosteriorErrorProbabilityModel.h:275
GaussFitter::GaussFitResult correctly_assigned_fit_param_
stores gauss parameters
Definition: PosteriorErrorProbabilityModel.h:278
double max_correctly_
peak of the gauss distribution (correctly assigned sequences)
Definition: PosteriorErrorProbabilityModel.h:284
A base class for all classes handling default parameters.
Definition: DefaultParamHandler.h:92
Main OpenMS namespace.
Definition: FeatureDeconvolution.h:46
double getNegativePrior() const
returns the estimated negative prior probability.
Definition: PosteriorErrorProbabilityModel.h:212
double sigma
parameter sigma of Gaussian distribution (width)
Definition: GaussFitter.h:80
GaussFitter::GaussFitResult getCorrectlyAssignedFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:194
std::vector< String > StringList
Vector of String.
Definition: ListUtils.h:70
double x0
parameter x0 of Gaussian distribution (center position)
Definition: GaussFitter.h:77
double negative_prior_
stores final prior probability for negative peptides
Definition: PosteriorErrorProbabilityModel.h:280
double max_incorrectly_
peak of the incorrectly assigned sequences distribution
Definition: PosteriorErrorProbabilityModel.h:282
double smallest_score_
smallest score which was used for fitting the model
Definition: PosteriorErrorProbabilityModel.h:286
GumbelMaxLikelihoodFitter::GumbelDistributionFitResult incorrectly_assigned_fit_gumbel_param_
Definition: PosteriorErrorProbabilityModel.h:276
Implements a mixture model of the inverse gumbel and the gauss distribution or a gaussian mixture.
Definition: PosteriorErrorProbabilityModel.h:73
static double getGumbel_(double x, const GaussFitter::GaussFitResult ¶ms)
computes the gumbel density at position x with parameters params.
Definition: PosteriorErrorProbabilityModel.h:218
double getSmallestScore()
returns the smallest score used in the last fit
Definition: PosteriorErrorProbabilityModel.h:246
GaussFitter::GaussFitResult getIncorrectlyAssignedFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:200
Representation of a peptide hit.
Definition: PeptideHit.h:55