|  | OpenMS
    2.6.0
    | 
 
 
  
  
 
Go to the documentation of this file.
   37 #include <OpenMS/OPENSWATHALGO/OpenSwathAlgoConfig.h> 
   51   OPENSWATHALGO_DLLAPI 
void normalize(
const std::vector<double>& intensities, 
double normalization_factor, std::vector<double>& normalized_intensities);
 
   60     for (; beg != end; ++beg)
 
   69     std::unary_function<double, double>
 
   81   template <
typename Texp, 
typename Ttheo>
 
   82   double dotProd(Texp intExpBeg, Texp intExpEnd, Ttheo intTheo)
 
   84     std::vector<double> res(std::distance(intExpBeg, intExpEnd));
 
   85     std::transform(intExpBeg, intExpEnd, intTheo, res.begin(), std::multiplies<double>());
 
   86     double sum = std::accumulate(res.begin(), res.end(), 0.);
 
   97   OPENSWATHALGO_DLLAPI 
double dotprodScoring(std::vector<double> intExp, std::vector<double> theorint);
 
  102   template <
typename Texp, 
typename Ttheo>
 
  106     for (std::size_t i = 0; itExpBeg < itExpEnd; ++itExpBeg, ++itTheo, ++i)
 
  108       double x = *itExpBeg - *itTheo;
 
  122   OPENSWATHALGO_DLLAPI 
double manhattanScoring(std::vector<double> intExp, std::vector<double> theorint);
 
  128   template <
typename TInputIterator, 
typename TInputIteratorY>
 
  129   typename std::iterator_traits<TInputIterator>::value_type 
cor_pearson(
 
  135     typedef typename std::iterator_traits<TInputIterator>::value_type value_type;
 
  139     m1 = m2 = s1 = s2 = 0.0;
 
  141     ptrdiff_t n = std::distance(xBeg, xEnd);
 
  142     value_type nd = static_cast<value_type>(n);
 
  143     for (; xBeg != xEnd; ++xBeg, ++yBeg)
 
  145       corr += *xBeg * *yBeg;
 
  156     if (s1 < 1.0e-12 || s2 < 1.0e-12)
 
  160       corr -= m1 * m2 * (
double)n;
 
  161       corr /= sqrt(s1 * s2);
 
  176       m_(0.0), q_(0.0), c_(0u)
 
  182       double const delta = sample - m_;
 
  184       q_ += delta * (sample - m_);
 
  189       return (c_ > 1u) ? (q_ / (c_ - 1)) : 0;
 
  194       return (c_ > 1u) ? (q_ / c_) : 0;
 
  199       return std::sqrt(sample_variance());
 
  204       return std::sqrt(standard_variance());
 
  219       return sample_variance();
 
  224       return sample_stddev();
 
  
double standard_stddev() const
Definition: StatsHelpers.h:202
static double sum(IteratorType begin, IteratorType end)
Calculates the sum of a range of values.
Definition: StatisticFunctions.h:120
Definition: MRMScoring.h:49
Definition: StatsHelpers.h:68
std::iterator_traits< TInputIterator >::value_type cor_pearson(TInputIterator xBeg, TInputIterator xEnd, TInputIteratorY yBeg)
compute pearson correlation of vector x and y
Definition: StatsHelpers.h:129
double norm(T beg, T end)
compute the norm of the vector
Definition: StatsHelpers.h:57
OPENSWATHALGO_DLLAPI double dotprodScoring(std::vector< double > intExp, std::vector< double > theorint)
the dot product scoring
void operator()(double sample)
Definition: StatsHelpers.h:180
double operator()() const
Definition: StatsHelpers.h:227
double standard_variance() const
Definition: StatsHelpers.h:192
functor to compute the mean and stddev of sequence using the std::foreach algorithm
Definition: StatsHelpers.h:169
double q_
Definition: StatsHelpers.h:171
double sample_variance() const
Definition: StatsHelpers.h:187
unsigned long c_
Definition: StatsHelpers.h:172
double mean() const
Definition: StatsHelpers.h:207
double operator()(double x)
Definition: StatsHelpers.h:71
double result_type
Definition: StatsHelpers.h:174
double manhattanDist(Texp itExpBeg, Texp itExpEnd, Ttheo itTheo)
compute manhattan distance between Exp and Theo
Definition: StatsHelpers.h:103
double dotProd(Texp intExpBeg, Texp intExpEnd, Ttheo intTheo)
compute dotprod of vectors
Definition: StatsHelpers.h:82
OPENSWATHALGO_DLLAPI double manhattanScoring(std::vector< double > intExp, std::vector< double > theorint)
manhattan scoring
OPENSWATHALGO_DLLAPI void normalize(const std::vector< double > &intensities, double normalization_factor, std::vector< double > &normalized_intensities)
Normalize intensities in vector by normalization_factor.
unsigned long count() const
Definition: StatsHelpers.h:212
double stddev() const
Definition: StatsHelpers.h:222
double sample_stddev() const
Definition: StatsHelpers.h:197
mean_and_stddev()
Definition: StatsHelpers.h:175
double variance() const
Definition: StatsHelpers.h:217