|  | OpenMS
    2.6.0
    | 
 
 
  
  
 
Go to the documentation of this file.
   69   template <
typename Container = MSSpectrum>
 
   93       this->
setName(
"SignalToNoiseEstimatorMeanIterative");
 
   95       defaults_.
setValue(
"max_intensity", -1, 
"maximal intensity considered for histogram construction. By default, it will be calculated automatically (see auto_mode)." \
 
   96                                               " Only provide this parameter if you know what you are doing (and change 'auto_mode' to '-1')!" \
 
   97                                               " All intensities EQUAL/ABOVE 'max_intensity' will not be added to the histogram." \
 
   98                                               " If you choose 'max_intensity' too small, the noise estimate might be too small as well." \
 
   99                                               " If chosen too big, the bins become quite large (which you could counter by increasing 'bin_count', which increases runtime).", ListUtils::create<String>(
"advanced"));
 
  102       defaults_.
setValue(
"auto_max_stdev_factor", 3.0, 
"parameter for 'max_intensity' estimation (if 'auto_mode' == 0): mean + 'auto_max_stdev_factor' * stdev", ListUtils::create<String>(
"advanced"));
 
  107       defaults_.
setValue(
"auto_max_percentile", 95, 
"parameter for 'max_intensity' estimation (if 'auto_mode' == 1): auto_max_percentile th percentile", ListUtils::create<String>(
"advanced"));
 
  111       defaults_.
setValue(
"auto_mode", 0, 
"method to use to determine maximal intensity: -1 --> use 'max_intensity'; 0 --> 'auto_max_stdev_factor' method (default); 1 --> 'auto_max_percentile' method", ListUtils::create<String>(
"advanced"));
 
  121       defaults_.
setValue(
"stdev_mp", 3.0, 
"multiplier for stdev", ListUtils::create<String>(
"advanced"));
 
  125       defaults_.
setValue(
"min_required_elements", 10, 
"minimum number of elements required in a window (otherwise it is considered sparse)");
 
  128       defaults_.
setValue(
"noise_for_empty_window", std::pow(10.0, 20), 
"noise value used for sparse windows", ListUtils::create<String>(
"advanced"));
 
  146       if (&source == 
this) 
return *
this;
 
  176       double sparse_window_percent = 0;
 
  198                                         OPENMS_PRETTY_FUNCTION,
 
  199                                         "auto_mode is on AUTOMAXBYPERCENT! auto_max_percentile is not in [0,100]. Use setAutoMaxPercentile(<value>) to change it!",
 
  203         std::vector<int> histogram_auto(100, 0);
 
  206         auto maxIt = std::max_element(
c.begin(), 
c.end() ,[](
const PeakType& a, 
const PeakType& b){ 
return a.getIntensity() > b.getIntensity();});
 
  209         double bin_size = maxInt / 100;
 
  214           ++histogram_auto[(
int) (((run).getIntensity() - 1) / bin_size)];
 
  219         int elements_seen = 0;
 
  223         while (run != scan_last_ && elements_seen < elements_below_percentile)
 
  226           elements_seen += histogram_auto[i];
 
  239                                         OPENMS_PRETTY_FUNCTION,
 
  240                                         "auto_mode is on MANUAL! max_intensity is <=0. Needs to be positive! Use setMaxIntensity(<value>) or enable auto_mode!",
 
  247         std::cerr << 
"TODO SignalToNoiseEstimatorMedian: the max_intensity_ value should be positive! " << 
max_intensity_ << std::endl;
 
  255       double window_half_size = 
win_len_ / 2;
 
  264         bin_value[bin] = (bin + 0.5) * bin_size;
 
  267       int hist_rightmost_bin;
 
  275       int elements_in_window = 0;
 
  276       int window_count = 0;
 
  284       while (window_pos_center != scan_last_)
 
  287         while ((*window_pos_borderleft).getMZ() <  (*window_pos_center).getMZ() - window_half_size)
 
  290           to_bin = (
int) ((std::max((*window_pos_borderleft).getIntensity(), 0.0f)) / bin_size);
 
  294             --elements_in_window;
 
  296           ++window_pos_borderleft;
 
  303         while ((window_pos_borderright != scan_last_)
 
  304               && ((*window_pos_borderright).getMZ() < (*window_pos_center).getMZ() + window_half_size))
 
  308           to_bin = (
int) ((std::max((*window_pos_borderright).getIntensity(), 0.0f)) / bin_size);
 
  312             ++elements_in_window;
 
  314           ++window_pos_borderright;
 
  320           ++sparse_window_percent;
 
  328           for (
int i = 0; i < 3; ++i)
 
  332             for (
int bin = 0; bin < hist_rightmost_bin; ++bin)
 
  336               hist_mean += histogram[bin] / (
double) elements_in_window * bin_value[bin];
 
  342             for (
int bin = 0; bin < hist_rightmost_bin; ++bin)
 
  344               double tmp(bin_value[bin] - hist_mean);
 
  345               hist_stdev += histogram[bin] / (
double) elements_in_window * tmp * tmp;
 
  347             hist_stdev = std::sqrt(hist_stdev);
 
  350             int estimate = (
int) ((hist_mean + hist_stdev * 
stdev_ - 1) / bin_size + 1);
 
  352             hist_rightmost_bin = std::min(estimate, 
bin_count_);
 
  356           noise = std::max(1.0, hist_mean);
 
  360         stn_estimates_[window_count] = (*window_pos_center).getIntensity() / noise;
 
  374       sparse_window_percent = sparse_window_percent * 100 / window_count;
 
  376       if (sparse_window_percent > 20)
 
  378         std::cerr << 
"WARNING in SignalToNoiseEstimatorMeanIterative: " 
  379                   << sparse_window_percent
 
  380                   << 
"% of all windows were sparse. You should consider increasing 'win_len' or increasing 'min_required_elements'" 
  381                   << 
" You should also check the MaximalIntensity value (or the parameters for its heuristic estimation)" 
  382                   << 
" If it is too low, then too many high intensity peaks will be discarded, which leads to a sparse window!" 
  
double auto_max_percentile_
parameter for initial automatic estimation of "max_intensity_" percentile or a stdev
Definition: SignalToNoiseEstimatorMeanIterative.h:410
void setProgress(SignedSize value) const
Sets the current progress.
void setMinFloat(const String &key, double min)
Sets the minimum value for the floating point or floating point list parameter key.
int min_required_elements_
minimal number of elements a window needs to cover to be used
Definition: SignalToNoiseEstimatorMeanIterative.h:420
SignalToNoiseEstimator< Container >::PeakIterator PeakIterator
Definition: SignalToNoiseEstimatorMeanIterative.h:83
Invalid value exception.
Definition: Exception.h:335
void setValue(const String &key, const DataValue &value, const String &description="", const StringList &tags=StringList())
Sets a value.
A more convenient string class.
Definition: String.h:59
This class represents the abstract base class of a signal to noise estimator.
Definition: SignalToNoiseEstimator.h:56
std::vector< double > stn_estimates_
stores the noise estimate for each peak
Definition: SignalToNoiseEstimator.h:171
void setName(const String &name)
Mutable access to the name.
double auto_max_stdev_Factor_
parameter for initial automatic estimation of "max_intensity_": a stdev multiplier
Definition: SignalToNoiseEstimatorMeanIterative.h:408
void setMaxInt(const String &key, Int max)
Sets the maximum value for the integer or integer list parameter key.
Definition: SignalToNoiseEstimatorMeanIterative.h:77
SignalToNoiseEstimator< Container >::GaussianEstimate GaussianEstimate
Definition: SignalToNoiseEstimatorMeanIterative.h:86
double variance
variance of estimated Gaussian
Definition: SignalToNoiseEstimator.h:133
const DataValue & getValue(const String &key) const
Returns a value of a parameter.
void startProgress(SignedSize begin, SignedSize end, const String &label) const
Initializes the progress display.
void computeSTN_(const Container &c) override
Definition: SignalToNoiseEstimatorMeanIterative.h:168
Estimates the signal/noise (S/N) ratio of each data point in a scan based on an iterative scheme whic...
Definition: SignalToNoiseEstimatorMeanIterative.h:70
IntensityThresholdCalculation
method to use for estimating the maximal intensity that is used for histogram calculation
Definition: SignalToNoiseEstimatorMeanIterative.h:77
void endProgress() const
Ends the progress display.
double max_intensity_
maximal intensity considered during binning (values above get discarded)
Definition: SignalToNoiseEstimatorMeanIterative.h:406
PeakIterator::value_type PeakType
Definition: SignalToNoiseEstimator.h:65
Main OpenMS namespace.
Definition: FeatureDeconvolution.h:46
SignalToNoiseEstimator< Container >::PeakType PeakType
Definition: SignalToNoiseEstimatorMeanIterative.h:84
double win_len_
range of data points which belong to a window in Thomson
Definition: SignalToNoiseEstimatorMeanIterative.h:414
SignalToNoiseEstimator & operator=(const SignalToNoiseEstimator &source)
Assignment operator.
Definition: SignalToNoiseEstimator.h:85
void setMinInt(const String &key, Int min)
Sets the minimum value for the integer or integer list parameter key.
void setMaxFloat(const String &key, double max)
Sets the maximum value for the floating point or floating point list parameter key.
double stdev_
multiplier for the stdev of intensities
Definition: SignalToNoiseEstimatorMeanIterative.h:418
int auto_mode_
determines which method shall be used for estimating "max_intensity_". valid are MANUAL=-1,...
Definition: SignalToNoiseEstimatorMeanIterative.h:412
Definition: SignalToNoiseEstimatorMeanIterative.h:77
int bin_count_
number of bins in the histogram
Definition: SignalToNoiseEstimatorMeanIterative.h:416
double mean
mean of estimated Gaussian
Definition: SignalToNoiseEstimator.h:132
GaussianEstimate estimate_(const PeakIterator &scan_first_, const PeakIterator &scan_last_) const
calculate mean & stdev of intensities of a spectrum
Definition: SignalToNoiseEstimator.h:138
double noise_for_empty_window_
Definition: SignalToNoiseEstimatorMeanIterative.h:423
Param defaults_
Container for default parameters. This member should be filled in the constructor of derived classes!
Definition: DefaultParamHandler.h:169
void defaultsToParam_()
Updates the parameters after the defaults have been set in the constructor.
SignalToNoiseEstimatorMeanIterative(const SignalToNoiseEstimatorMeanIterative &source)
Copy Constructor.
Definition: SignalToNoiseEstimatorMeanIterative.h:134
void updateMembers_() override
overridden function from DefaultParamHandler to keep members up to date, when a parameter is changed
Definition: SignalToNoiseEstimatorMeanIterative.h:391
Container::const_iterator PeakIterator
Definition: SignalToNoiseEstimator.h:64
SignalToNoiseEstimatorMeanIterative()
default constructor
Definition: SignalToNoiseEstimatorMeanIterative.h:90
SignalToNoiseEstimatorMeanIterative & operator=(const SignalToNoiseEstimatorMeanIterative &source)
Definition: SignalToNoiseEstimatorMeanIterative.h:144
Definition: SignalToNoiseEstimatorMeanIterative.h:77
protected struct to store parameters my, sigma for a Gaussian distribution
Definition: SignalToNoiseEstimator.h:130
Param param_
Container for current parameters.
Definition: DefaultParamHandler.h:162
~SignalToNoiseEstimatorMeanIterative() override
Destructor.
Definition: SignalToNoiseEstimatorMeanIterative.h:157