|  | OpenMS
    2.6.0
    | 
 
 
  
  
 
Go to the documentation of this file.
   37 #include <OpenMS/config.h>  
   73     void getDefaultParameters(
Param& params);
 
  111     template <
typename PeakContainerT>
 
  112     void fitEMGPeakModel(
 
  113       const PeakContainerT& input_peak,
 
  114       PeakContainerT& output_peak,
 
  115       const double left_pos = 0.0,
 
  116       const double right_pos = 0.0
 
  131     UInt estimateEmgParameters(
 
  132       const std::vector<double>& xs,
 
  133       const std::vector<double>& ys,
 
  154     void applyEstimatedParameters(
 
  155       const std::vector<double>& xs,
 
  160       std::vector<double>& out_xs,
 
  161       std::vector<double>& out_ys
 
  165     void updateMembers_() 
override;
 
  189     void extractTrainingSet(
 
  190       const std::vector<double>& xs,
 
  191       const std::vector<double>& ys,
 
  192       std::vector<double>& TrX,
 
  193       std::vector<double>& TrY
 
  208     double computeMuMaxDistance(
const std::vector<double>& xs) 
const;
 
  223     double computeInitialMean(
 
  224       const std::vector<double>& xs,
 
  225       const std::vector<double>& ys
 
  247       const double prev_diff_E_param,
 
  248       double& diff_E_param,
 
  250       double& param_update,
 
  252       const double current_E,
 
  253       const double previous_E
 
  271     double Loss_function(
 
  272       const std::vector<double>& xs,
 
  273       const std::vector<double>& ys,
 
  296       const std::vector<double>& xs,
 
  297       const std::vector<double>& ys,
 
  320       const std::vector<double>& xs,
 
  321       const std::vector<double>& ys,
 
  344       const std::vector<double>& xs,
 
  345       const std::vector<double>& ys,
 
  368       const std::vector<double>& xs,
 
  369       const std::vector<double>& ys,
 
  449       const std::vector<double>& xs,
 
  450       const std::vector<double>& ys,
 
  466       const std::vector<double>& xs,
 
  467       const std::vector<double>& ys,
 
  468       std::vector<double>& TrX,
 
  469       std::vector<double>& TrY
 
  476       const std::vector<double>& xs,
 
  477       const std::vector<double>& ys
 
  484       const double prev_diff_E_param,
 
  485       double& diff_E_param,
 
  487       double& param_update,
 
  489       const double current_E,
 
  490       const double previous_E
 
  494         prev_diff_E_param, diff_E_param, param_lr,
 
  495         param_update, param, current_E, previous_E
 
  510       const std::vector<double>& xs,
 
  515       std::vector<double>& out_xs,
 
  516       std::vector<double>& out_ys
 
  
UInt print_debug_
Definition: EmgGradientDescent.h:430
~EmgGradientDescent_friend()=default
void applyEstimatedParameters(const std::vector< double > &xs, const double h, const double mu, const double sigma, const double tau, std::vector< double > &out_xs, std::vector< double > &out_ys) const
Compute the EMG function on a set of points.
void extractTrainingSet(const std::vector< double > &xs, const std::vector< double > &ys, std::vector< double > &TrX, std::vector< double > &TrY) const
Given a peak, extract a training set to be used with the gradient descent algorithm.
bool compute_additional_points_
Definition: EmgGradientDescent.h:439
double emg_point(const double x, const double h, const double mu, const double sigma, const double tau) const
Compute the EMG function on a single point.
void iRpropPlus(const double prev_diff_E_param, double &diff_E_param, double ¶m_lr, double ¶m_update, double ¶m, const double current_E, const double previous_E) const
Definition: EmgGradientDescent.h:483
Compute the area, background and shape metrics of a peak.
Definition: EmgGradientDescent.h:64
double Loss_function(const std::vector< double > &xs, const std::vector< double > &ys, const double h, const double mu, const double sigma, const double tau) const
Compute the cost given by loss function E.
double computeMuMaxDistance(const std::vector< double > &xs) const
Definition: EmgGradientDescent.h:460
A base class for all classes handling default parameters.
Definition: DefaultParamHandler.h:92
double computeInitialMean(const std::vector< double > &xs, const std::vector< double > &ys) const
Compute an estimation of the mean of a peak.
Main OpenMS namespace.
Definition: FeatureDeconvolution.h:46
double emg_point(const double x, const double h, const double mu, const double sigma, const double tau) const
Definition: EmgGradientDescent.h:522
EmgGradientDescent_friend()=default
double compute_z(const double x, const double mu, const double sigma, const double tau) const
Compute EMG's z parameter.
void extractTrainingSet(const std::vector< double > &xs, const std::vector< double > &ys, std::vector< double > &TrX, std::vector< double > &TrY) const
Definition: EmgGradientDescent.h:465
double compute_z(const double x, const double mu, const double sigma, const double tau) const
Definition: EmgGradientDescent.h:499
Definition: EmgGradientDescent.h:442
EmgGradientDescent emg_gd_
Definition: EmgGradientDescent.h:533
void applyEstimatedParameters(const std::vector< double > &xs, const double h, const double mu, const double sigma, const double tau, std::vector< double > &out_xs, std::vector< double > &out_ys) const
Definition: EmgGradientDescent.h:509
unsigned int UInt
Unsigned integer type.
Definition: Types.h:94
double computeInitialMean(const std::vector< double > &xs, const std::vector< double > &ys) const
Definition: EmgGradientDescent.h:475
double computeMuMaxDistance(const std::vector< double > &xs) const
Compute the boundary for the mean (`mu`) parameter in gradient descent.
Management and storage of parameters / INI files.
Definition: Param.h:73
double Loss_function(const std::vector< double > &xs, const std::vector< double > &ys, const double h, const double mu, const double sigma, const double tau) const
Definition: EmgGradientDescent.h:448
void iRpropPlus(const double prev_diff_E_param, double &diff_E_param, double ¶m_lr, double ¶m_update, double ¶m, const double current_E, const double previous_E) const
Apply the iRprop+ algorithm for gradient descent.
UInt max_gd_iter_
Maximum number of gradient descent iterations in `fitEMGPeakModel()`.
Definition: EmgGradientDescent.h:433